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Abstract. The total number of three-dimensional integrable potentials which possess one  
linear and o n e  quadratic integial of motion in involution in the momenta is found.  These 
potentials, which are  given by a Darboux equation, belong to four distinct classes and  
involve two arbitrary functions in their expression. 

1. Introduction 

As is well known, an N-dimensional Hamiltonian system is integrable if N integrals 
in involution for this system exist (e.g. Arnold 1978). Direct construction of such 
integrable systems can be achieved by application of a method due to Bertrand (1852). 
For the two-dimensional case, Darboux (1901) obtained a second-order partial differen- 
tial equation and found the general form for the potential, in order for the system to 
possess an integral quadratic in the momenta. Darboux’s work is also presented by 
Whittaker (1937). Very recently, Dorizzi et al (1983) completed Darboux’s results for 
some exceptional cases, so that the total number of two-dimensional integrable poten- 
tials which possess an integral quadratic in the momenta is known. 

Many new two-dimensional integrable systems possessing integrals of more compli- 
cated form have also been found by several authors, and all the results in this field 
up to 1986 can be found in a complete review by Hietarinta (1986). 

A different method to check integrability makes use of the Painleve property of 
the differential equations of the pertinent system (Bountis et al 1982) while non- 
integrability can be proved in some cases by use of Ziglin’s theorem (Ziglin 1983a, b, 
Yoshida 1986). 

Though much work has been done in direct search for two-dimensional integrable 
systems, there are only a few results in three dimensions. Chandrasekhar (1960) found 
the general form for the coefficients of an integral of motion quadratic in the velocities 
possessed by a three-dimensional time-dependent potential and also the set of differen- 
tial equations which the potential must satisfy. Makarov et a1 (1967) considered the 
existence of pairs of commuting integrals of motion related to the separation of variables 
in the Schrodinger equation. Recently, Grammaticos et a1 (1985) presented a method 
of generalising integrable Hamiltonians from two to N dimensions which is applicable 
if additional terms can be added to the potential without destroying integrability. 
Fordy et a1 (1986) studied the integrability of quartic potentials from the point of view 
of Lax representations. Dorizzi et a1 (1986) found new integrable three-dimensional 
quartic potentials by combined use of singularity analysis ( Painlev6 property or Ziglin’s 
theorem) and explicit construction of the integrals of motion. 
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In this paper, we construct three-dimensional integrable systems which possess one 
integral which is linear in the momenta. As a first step, we obtain the general form 
for the potential in order to possess such an  integral. Then we find the totality of 
three-dimensional integrable potentials which possess two integrals linear in the 
momenta. This result is poor, as expected, since by a suitable transformation these 
systems simply reduce to two-dimensional central potentials. In § 3 we obtain the total 
number of three-dimensional integrable potentials which possess one linear and one 
quadratic integral of motion in the momenta. These systems eventually relate to 
Darboux’s systems and are expressed in all cases via two arbitrary functions. 

2. Three-dimensional potentials possessing integrals linear in the momenta 

The Hamiltonian for a particle of unit mass moving in space under the influence of a 
potential V is 

H = f 6 , p , p I  + V ( x i ,  ~ 2 ,  ~ 1 )  ( i , j  = 1 , 2 , 3 )  (1) 

where x,  are orthogonal Cartesian coordinates, p ,  =XI and 6, is the Kronecker delta. 
( A  dot denotes a time derivative while a sum over repeated indices is understood.) 

Suppose that system (1) possesses an integral of motion linear in the momenta: 

I ,  = a , ( x k ) p l  = a p = constant (i ,  k = 1,2 ,  3) (2) 

where a = a,e, ,  p = p , e ,  and e, is the unit vector along the x ,  axis. In order that ( 2 )  is 
an integral of motion of system ( 1  1, its Poisson bracket with H must vanish identically, 
i.e. 

Equation (3) yields 

aa, /ax ,  = -aa,/ax, ( i , j  = 1, 2 ,3 )  (4) 
and also 

a .  v v =  0. 

The solution of system (4) is 

( 5 )  

a = S r + d  (6) 
where r = x,e,, d is a constant vector and S is a 3 x 3 skew-symmetric constant matrix. 
By a suitable translation of the origin of the coordinate system it can be put in the 
generic case where S # 0: 

d = 0 .  ( 7 )  

(8) 
where s is the axial vector of S, i.e. s, = ie,,,S,,, where e,,k is the permutation symbol. 
Equation (5)  now becomes 

( 9 )  

In view of equations (6) and ( 7 ) ,  I ,  takes the form 

I, = ( Sr ) - p = ( s x r ) - p 

( s  x r )  V V = 0 
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and the solution of (9 )  for the potential V is 

v = V(r ' ,  s r ) .  

Now we can state the following. 

Proposition 1 .  The three-dimensional potentials which possess one integral of motion 
linear in the momenta are of the form V = V (  r', s * r )  where s is a constant vector and 
the corresponding integral is I, = (s x r )  - p .  

Let us suppose now that system (1) possesses, in addition to I , ,  a second integral I,, 
linear in the momenta, and  also that I, and l2 are in involution, i.e. 

[I,, I,] = 0 (11) 

so that the system (1) is integrable. 
In order that the relation [ I 2 ,  HI = 0 holds, I, must be of the form 

I 2  = ( S ' r )  p + d' * p  (12) 
where S' is a 3 x 3 skew-symmetric constant matrix and d' is a constant vector. If we 
consider (8) and (12), equation (11) now yields 

SS' = S'S (13a)  

and 

Sd' = 0. 

Equation (13a)  implies 

S'= k , S  

where k ,  is an arbitrary constant. Indeed, let s' be the axial vector of S'. Since S:, = e lIks;  
and S,, = e,,,&, equation (13a)  becomes 

eiklekjmSl sk = etklek,mS;Sm 

or  

(6ty61m - ~ , ~ S I J ) ~ P L  = (6, ,6,m - 6 , m 6 1 / ) s i s m  

s:s, = s,s; 

or 

i.e. the vectors s and s' are collinear, which implies equation (14). On the other hand, 
equation (13 b )  is written s x d' = 0, i.e. 

d' = k,s (15) 
where k ,  is also an  arbitrary constant. In view of equations (14) and (15),  after 
subtracting k , l ,  and dividing by k,, I, takes the form 

(16) I ,  = s * p .  

Now the condition [ I , ,  HI = 0 is satisfied if also 

s . v v = o .  (17) 

( =  r 2  

Since V is of the form ( lo) ,  we introduce new variables 6, 7) by the relations 

77 = S '  r 
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and equation ( 17) takes the form (subscripts denote partial derivatives) 

2 7 v , + s 2 v ,  = o  

v =  V ( s ' ( - v 2 ) .  

with the solution 

Since 

s 2 ( -  q 2  = s2r2  - ( s  * r)'= 1s x rI2 

V =  V ( l s x r 1 )  (19) 

equation (18) becomes 

so we have proved the following. 

Proposition 2. The integrable three-dimensional potentials with two integrals in involu- 
tion, linear in the momenta, are of the form V = V ( l s  x rl)  where s is a constant vector. 
The corresponding integrals are I, = ( s  x r )  * p and I 2  = s * p .  

In order to simplify expression (19), we perform a rotation of the coordinate system 
so that 

s = e , .  (20) 

v =  V ( P )  

p = (x;+x;)I 'z (21) 

1, = XIP, - x2p1 = 1, (22a)  

1, = p3 ( 2 2 b )  

Then equation (19) takes the form 

where 

and equations (8) and (16) respectively give 

where l3  is the component of the angular momentum vector along the xj axis. Finally, 
by a suitable choice of the inertial frame, p ,  can be put equal to zero, and so the 
systems involved in proposition 2 are in fact two dimensional and correspond to central 
potentials. 

3. Three-dimensional integrable systems possessing one linear and one quadratic 
integral in the momenta 

Let us suppose now that system (1) possesses one integral of motion I ,  linear in the 
momenta, which, according to 3 2,  must be of the form ( 8 )  and, in addition, one integral 
I,, quadratic in the momenta, of the form 

1, = P ' ( AP) + 2F(xk (23) 
where A is a symmetric matrix, the elements of which depend on x,, x 2 ,  x, as well as 
the function F. 

The condition [ 12, H] = 0 leads to the following equations: 

A y , k  -k Azkj + = 0 (24a) 
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and 
V F = A V V  

where 
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(246) 

Integrability conditions for (24b) are given by the equation 

V x (AV V )  = 0. (25) 
The involution condition between the two integrals, [ I , ,  I , ]  0, implies the 

equations 

Atj.kSklXI + AikSk,  + A j k S k i  = 

( s  x r )  * V F  = 0. 

(26a) 

(26b) 

where S,, are the elements of the constant matrix S appearing in ( S ) ,  and 

Equation (266) for F coincides with equation (9) for V. 
In order to simplify the mathematical procedure, at this point we perform a rotation 

of the coordinate system so that s = e 3 .  Then we also have SZl = -SI, = 1 while all 
other S ,  equal zero, and I ,  becomes 

1, = X I P 2  - X 2 P l .  (27) 
The solution of equation (9) is of the form given by (lo),  which can be written for 

convenience as 

v =  V(P, z )  
where p is given by (21) and z = x3.  

Function F, as a solution of equation (26b), is of the same form 

F = F( p, z ) .  

The system of equations (24a) has been solved by Chandrasekhar and its solution 
is (Chandrasekhar 1960, p 96) 

A l l  = -2 (h20+  h21x3)x2-  h40x: - (a0f2g30x3+g40x:) 

A 2 2 =  ~ 2 ~ f 2 0 ~ f 2 1 X I ~ X 3 ~ f 4 0 X ~ ~ ~ b O ~ 2 h 3 0 x l  + 

A 3 3  = -2( g20 + g2 i x 2 ) x i  - g4nd - (co + 2.Lox, + L X : )  

A13= A 3 1  = ~ ~ l * + ~ I l ~ 2 - f 2 l ~ : ~ + ~ ~ 2 0 + ~ 2 1 ~ 2 ~ ~ 3 + ~ ~ 3 0 +  h2lx2)xl+g,,xlx3 

A 2 3  = A 3 2  = (fin+fiixi - h 2 i d )  + ( f i o + f 2 i x i ) x z  + ( .Lo+ g,ixi)x3+f4ox2~3 
wherefkl, gkl, hkl ( k = l , 4 ,  l = O ,  l ) ,  a,, bo, co are constants a n d f , l + g l , + h l , = O .  By 
replacing A,, as given by (28) in equations (26a),  we obtain the relations 

(28) 
A 12 = A21 = ( IO+ h l  I x3 - g2Ix:) + ( h20 + h21x3)xl + ( h30+f2 I x 3 ) x 2  + h40XI x2 

AI2 = x l A l 2 . l  = X2A12 .2  

~ 2 A 1 2 , 1 -  x i A i 2 . 2  + Ai 1 - A 2 2  = 0 

X2A13,3 

X 2 A 1 3 , 1 - X 1 A 1 3 , 2 - A 2 3 = 0  

X 2 A 2 3 , i  - x i A 2 3 , 2 + A i 3 = 0  
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which give 

f i l  = g21 = hi1 = 0 

f 1 0 =  g , o =  h , o =  0 

h l l = f 3 0 = h 3 0 = g Z O =  h z o = O  

f40 = g40 f l l  = -g11 

a, = bo. f20 = g30 

We rename the remaining non-zero constants as follows: 

c1 = f 4 o  c2 = h40 c3 = f l l  

c4 =f*o c5 = a, c6= CO. 

Since V and  F are functions of p and z only, equations (246) take the form 

Fp = A I 1 + x2A 12) v,, + pA 13 vz 

A 13 + x2A23f  vp + pA33 vz. 

(29a) 

X i F ,  = (xlAl,+xiA22)V, +PA23VZ (296) 

pFz = (29c) 

Multiplying (29a) by x2,  (29b) by x I  and subtracting, after some algebra we obtain 

c , = o  (30) 

while multiplying (29a) by x I ,  (296) by x2 and adding, we obtain, together with (29c), 
the system 

(31a) 

(31b) 

F, = - ( c g  + 2 C4z  + c, z 2 )  v, + p ( Cq + C l  z )  v, 
F, = p ( c 4 +  clz )  v,, - ( C 6 +  q p Z )  v,. 

The integrability condition F,, = Fzp on the system (31) yields the equation 

p(c,+ C I Z ) (  v,,, - V??) + [ (cg - c g )  + 2c4z + C l Z 2  - c , p 2 ]  v,, - 3c1pV, +3(  c4+ C , Z )  v, = 0. 
(32) 

(=  e,+ c,z (33a) 

77 = ClP (336) 

y = C , ( C ,  - C h )  - c: 

~ 5 (  V,, - Vg) + ( Y  + 5’- v 2 )  V,, + 35V, -377VC = 0. 

At this point we suppose that cl # 0. Then, transforming to new variables 

and putting 

(34) 

equation (32) becomes 

(35) 

Equation (35) is the well known Darboux equation (Darboux 1901, Whittaker 
1937). This equation, written in planar coordinates x, y ,  gives as a solution the total 
number of two-dimensional potentials V(x, y )  possessing an integral quadratic in the 
momenta, except for some special cases (Dorizzi et at’ 1983). Its solution for y # 0 is 

(36) v = ( f  ( U )  + 8(  u ) ) I ( u 2  - U’) 
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where U and U are given by 

2 u 2  = 5’ + 772 + y + [ ( t2 + v 2  + y )’ - 4y772]1’2 

2u2 = [’+ v 2 +  - [ ( r ’ +  7 7 2 +  y ) *  -4yq2]”’ 

while for y = 0 the solution is 

where f and g are in both cases arbitrary functions of their respective arguments. 
Equations (31 )  in variables 5, 77 become 

c ,  F, = -( rY + 8’) v, + V[V* 

Cl F* = 77w, - ( P  + T 2 )  v* 
(39a) 

(39b) 

where 

a = c I C 5 - c :  P = c l  c6 

so that 

y = f f - p .  

By substituting in (39) 

C, F =  - p V -  G 

we have 

G, = SC5Vv - TVO + YV, ( 4 1 ~ )  

G, = - s ( ~ V ,  - vVO. (41b) 

G = ( U 2 f ( U ) + u 2 g ( u ) ) / ( U 2 - u 2 )  (42a) 

G = g ( 5 / 7 7 ) .  (426) 

The solution of equations (41) is given in Hietarinta (1986, p 30) and for y # 0 it is 

while for y = 0 

The quadratic form in (23) becomes 

A,p,p,  = -( 1 /  CI )[2PT + C l  G I :  + h i  -P1O2 + (x2k  - P 2 5 ) 2  + Y( p :  + P 3 l  
where T = i p , p ,  is the kinetic energy, so that the second invariant I ? ,  after multiplying 
by -cI and subtracting 2PH + c , c , l : ,  becomes 

while, for y = 0, it becomes 

1 2  = ( x l i - P 1 5 ) 2 +  ( x 2 i - P * 5 ) 2 + 2 g ( 5 / 7 7 )  

where 6, 77 are given by (33 )  and U, U by (37 ) .  
For the special case cI = 0, equation ( 3 2 )  becomes 

(44) 

c,p( v,, - VZZ) + [ ( c ,  - CfJ + 2c,z]  v,, + 3c4 v, = 0. (45) 
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We suppose that c4 f 0 and after the transformation 

5 = i ( C 5 -  c6) + c4z 

rl = C4P 

equation (45) takes the form 

25V,,+rl(V,,- vE5)+3v,=o. 

This equation has been solved by Dorizzi er a1 (1983) for the two-dimensional case 
and its solution is 

v = ( l / u ) [ f ( u  + U) +g(u - U 1 1  (47) 

and f and g are arbitrary functions. 
If we put 

F=-C,V-G (49) 

equations (31 )  give the solution (Dorizzi et a1 1983) 

G = -( l / u ) [ ( u  + u ) ~ ( u  - U )  -(U - u ) ~ ( u  + U)] (50)  

and, after subtracting suitable amounts of H and Z:, and dividing by two, Z2 becomes 

~ 2 = P , ( 5 P , - ~ x l ) + P 2 ( 5 P 2 - i X 2 ) + ( 1 / ~ ) [ ( ~ + ~ ) g ( u - ~ ) - ( u - ~ ) f ( u + ~ ) l  (51 )  

where 5 is given by (46a) and U, U by (48). 
Finally, for the degenerate case c ,  = c4 = 0, equation (32) reduces to 

v,, = 0 

V=f(p)+g(z)  (52) 

i.e. 

where f and g are arbitrary functions. System (31) yields 

F=-c5f(p)-c6g(z) (53) 

I 2  = c5[ p :  + + 2f( p ) 1 + c6[ p :  + 2g ( 1. 

and the second integral I ,  becomes 

(54) 

At this point we may conclude the results of this section with the following. 

Proposition 3. Three-dimensional integrable potentials which possess two integrals I , ,  
12, in involution, linear and quadratic in the momenta respectively, belong to one of 
the four classes given by equations (36), (38), (47) and (52). Integral I ,  is given by 
equation (27) and corresponds to the component of the angular momentum along a 
certain direction, while I 2  is, for each case, given by equations (43), (44), (51) and (54). 
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4. Conclusions 
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In this paper we have found the total number of three-dimensional integrable potentials 
which possess one integral of motion I ,  linear in the momenta and  a second integral 
I 2  in involution with I ,  which is linear or quadratic in the momenta. 

An integral of motion linear in the momenta corresponds in general to the com- 
ponent of the angular momentum along a certain direction and this is expressed in 
the potential as an ignorable coordinate in a suitably chosen system of cylindrical 
coordinates. 

If we demand the existence of a second integral in involution, also linear in the 
momenta, this second integral turns out to be merely the linear momentum along the 
same direction. The system in fact becomes two dimensional and  the potential is central. 

Finally, the total number of systems which possess in addition to I ,  a second 
integral I 2  quadratic in the momenta is found. These potentials are found in the generic 
case as solutions of a Darboux equation. The two special cases treated at the end of 
§ 3 relate also to the corresponding two-dimensional cases. 
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